Tallinn University Winter School: Data Analytics & Visualization.

Duration: 2 weeks (10 days, 3 hours per day)

Audience: Bachelor's & Master's students, mixed background

Structure: Lecture/discussion (45 min) → Hands-on/lab (90 min) → Wrap-up (30 min)

Week 1: Foundations of Visualization & Data Literacy

Day 1 - Introduction to Data & Visualization

- Lecture:
 - What is data visualization, and why does it matter?
 - Historical perspectives (from Playfair to Minard to Florence Nightingale)
 - \circ The data \rightarrow information \rightarrow knowledge \rightarrow insight chain
- Lab:
 - Exploring famous historical visualizations, group critique
 - Hands-on: simple plots (bar, line, scatter) in Python + Seaborn, MatPlotLib
- Outcome: Students understand the role of visualization in communication.

Day 2 – Visual Perception & Cognitive Principles

- Lecture:
 - How humans perceive patterns (Gestalt principles, pre-attentive attributes)
 - Color perception, accessibility considerations (color blindness)
 - Common cognitive pitfalls (e.g., chartjunk, 3D effects)
- Lab:
 - Critique of "bad charts" from media, redesign exercises
 - Experiment with color schemes using tools (ColorBrewer, Viz Palette)
- Outcome: Students grasp perceptual principles behind effective visualization.

Day 3 - Data Types & Chart Types

- Lecture:
 - Matching data types to visual forms (categorical, ordinal, quantitative, time series, spatial)
 - The grammar of graphics (what encodes what)
 - Strengths/weaknesses of common chart types
- Lab:
 - Hands-on: creating appropriate charts for different datasets

- \circ Mis-matched visualizations (e.g., pie charts for time series) \to critique and correction
- Outcome: Students learn to select the right chart for the right data.

Day 4 - Principles of Good Visualization

Lecture:

- Edward Tufte's principles (data-ink ratio, avoiding distortion, maximizing data density)
- o Stephen Few's guidelines on clarity
- Storytelling vs. exploration

• Lab:

- Re-designing poor visualizations with Tufte/Few principles
- Students annotate what makes a viz good or misleading
- Outcome: Students can apply theoretical design principles to improve charts.

Day 5 – Exploring Multivariate Data

• Lecture:

- o Beyond univariate: relationships between multiple variables
- Visual encodings for multivariate data (scatterplot matrix, small multiples, parallel coordinates)
- Trade-offs between simplicity and completeness

• Lab:

- Students visualize relationships in a multivariate dataset (e.g., cars dataset, world development indicators)
- Outcome: Students practice handling richer datasets and balancing clarity vs. complexity.

Week 2: Advanced Visualization Theory & Practice

Day 6 – Visualizing Time, Space, and Networks

• Lecture:

- o Time series visualization: trends, seasonality, uncertainty
- o Geospatial visualization: maps, choropleths, pitfalls of geographic encoding
 - Networks: when relationships matter more than values

• Lab:

- Hands-on:
 - Time series exploration (temperature data, stock prices)
 - Basic mapping (choropleth or symbol map using simple tools)
- Outcome: Students understand challenges of visualizing time and space.

Day 7 - Narrative Visualization & Storytelling

- Lecture:
 - Exploratory vs. explanatory visualization
 - Narrative structures in data stories
 - o The role of annotation, sequencing, and interactivity
- Lab:
 - Students turn a static dataset into a short "story" with 3–5 annotated visuals
 - Peer critique session
- Outcome: Students practice turning data into a narrative, not just a chart.

Day 8 - Ethics, Misrepresentation & Persuasion

- Lecture:
 - o Ethics in visualization: cherry-picking, truncating axes, misleading design
 - Data privacy and responsible communication
 - o Persuasion vs. manipulation
- Lab:
 - o Students "fix" misleading charts from media sources
 - o Group debate: visualization as truth vs. visualization as rhetoric
- Outcome: Students develop critical thinking about ethical choices in visualization.

Day 9 - Workshop: Student Mini-Projects

- Lecture:
 - Framing a visualization project: asking good questions, choosing data, defining audience
 - Examples of successful student projects
- Lab (majority of session):
 - Students (individually or in pairs) pick a small dataset and develop a mini visualization project (EDA + 2–3 clear visualizations with explanation)
- Outcome: Students begin an end-to-end project applying theory & practice.

Day 10 - Project Presentations & Course Wrap-Up

- Student Presentations:
 - Each student/group presents their project (5–7 min each)
 - o Focus on clarity, storytelling, and application of design principles
- Wrap-Up Lecture:
 - Recap of major themes (perception, design principles, ethics, storytelling)
 - Trends in visualization (interactivity, AI, immersive viz)

•	Outcome: Students leave with a completed mini-project and a strong grounding in theory.	